
A s embedded devices grow
larger and more complex,
the ability to debug the soft-
ware that drives them will
limit how much software can

be successfully integrated to meet
release deadlines. Further, as more
device software consists of third-party
or even open source programs, the
challenge of integrating and releasing
embedded devices on time becomes
more daunting.

Fortunately for device software
engineers facing this difficult environ-
ment, newly designed tools and tech-
nologies make this process easier. One
technology becoming more pervasive,
hardware trace, can significantly
improve the integration and debug-

ging process. Hardware trace offers a
complete history of the instructions a
microprocessor executes and provides
unique visibility into the workings of
device software.

Traditionally a low-level hardware
and firmware tool, hardware trace
required that users pore over hun-
dreds or thousands of lines of assem-
bly code to determine a bug’s source.
However, a new generation of trace
tools now presents this mass of infor-
mation in terms software engineers
can easily understand. Software engi-
neers can use these tools to debug
more efficiently by stepping and run-
ning programs backward in time using
the same familiar interface as a stan-
dard software debugger. Some trace

tools also provide advanced interfaces
that help engineers quickly compre-
hend how their software works.

DEBUGGING NIGHTMARE
The most difficult software bugs

occur only intermittently when testers
try to reproduce them. These bugs can
often be the source of lengthy schedule
delays because they are unpredictable
and might never be found. They are
also the most likely to make it through
final release testing, causing frustra-
tion for customers and expensive sup-
port problems for the developers’
organization.

Using traditional tools makes the
job of finding these bugs easier, but
tracking them down and fixing them
often remains extremely difficult. For
example, if a program hits an error
condition in software, setting a break-
point on that line of code to catch the
program after the error occurs can be
done easily. Unfortunately, this does
not let testers determine how the pro-
gram arrived at the error condition.
They still do not know what events led
up to this error. It could be a memory
corruption or some other type of inter-
mittent problem. Or the hardware
might have malfunctioned, feeding the
software bogus data that was not
properly handled. While testers can
track down these types of bugs with
traditional debugging tools, doing so
is often frustrating and expensive.

If employed to capture detailed
information about the system instead
of simply applying traditional debug-
ging techniques, hardware trace can
locate the source of most errors rela-
tively quickly. For example, if testers
collect a trace leading up to an error
condition, they can then move back-
ward through the execution of their

The Device
Software
Engineer’s
Best Friend
Michael Lindahl, Green Hills Software

E M B E D D E D C O M P U T I N G

Hardware trace
can make developers’
lives a little less
stressful.

M a y 2 0 0 6

able and running backward. When the
debugger stops, testers can check the
value of the variables that determine
the incorrect value. Iteratively follow-
ing this process will lead to the source
of the bug, making it trivial to track
down an otherwise difficult glitch.

Figure 1 shows an example in which
a debugger hit an error when process-
ing a simple MP3 playback message. If
this bug occurs intermittently, it might
be difficult to catch the conditions that
led to the error. However, if testers have
hardware trace data leading up to the
error, they can simply step backward
through the code to determine why it
hit this error. After stepping back a few
times, they arrive at the source of their
problem, which was caused in this case
by trying to read past the end of the
MP3 file being played.

The file has 10 chunks in it, and the
software is trying to read too much

software to locate the error’s source.
Tools like our TimeMachine De-
bugger integrate the trace data directly
into the debugger, making it easier to
find most bugs and perhaps even to
find the most difficult, intermittent
bugs using a familiar software debug-
ger interface.

In an MP3 player, for example,
testers could run into an intermittent
bug during playback or a bug in the
USB driver that causes the USB inter-
face to freeze. These types of bugs can
be solved relatively quickly using trace
tools because testers can simply work
their way backward from the bug’s
symptoms to the bug’s root cause.

If an error appears because a vari-
able has an inconsistent value, testers
can work backward to where that
variable was last written. This can eas-
ily be determined from trace data by
setting a data watchpoint on the vari-

data from the file. While simple, if this
bug only occurs in certain files or in
limited and difficult to reproduce cir-
cumstances, hardware trace provides
a valuable tool for finding and fixing
the error.

A PERFORMANCE MESS
Intermittent performance problems

can balloon into a huge mess. If, after
fixing all known bugs in a system,
testers discover that the software per-
forms great most of the time, but some
parts of the code seem to run too
slowly under certain circumstances,
tracking down the problem’s source
becomes difficult. Additionally, if
developers are simply integrating
third-party software, it becomes even
harder to find the error’s source
because they must first spend a signif-
icant amount of time learning how the
code works in detail.

With traditional debugging tools,
they might set some breakpoints in a
debugger or modify the code to
attempt to catch its slow execution.
However, once they determine that the
code ran too slowly, they might have
already passed the point at which they
can easily discover the problem’s
cause. In addition, if testers use a soft-
ware debugger or other tool that mod-
ifies the system’s execution, the
software might behave differently
than when it runs at full speed.

With hardware trace, however, a
system can run at full speed while
testers nonintrusively collect infor-
mation about what the software is
doing. They can then analyze this
information to determine why it failed
to run optimally.

One example of a performance
problem in which hardware trace is
especially useful occurs when the
amount of time a function takes to
execute depends on its parameters.
This is a common situation, but one
that traditional profilers do not gen-
erally make easy to track down.

For example, say that the testers
have finished the first version of the
software for an MP3 player, but users
complain that the device sometimes
freezes momentarily when they add a
new song. Because this does not hap-
pen every time, the bug is difficult to

E M B E D D E D C O M P U T I N G

Figure 1. Tracking an intermittent bug. A debugger hit an error when processing a simple
MP3 playback message. When such a bug occurs only intermittently, it can be difficult to
catch the conditions leading to the error. If they have hardware trace data leading up to the
error, however, testers can step backward through the code to determine the error’s cause.

track down. However, if the testers can
collect trace data for their system and
then stop trace collection when the
performance bug occurs, they can eas-
ily determine the source of this bug.

Using the PathAnalyzer tool, which
shows a graphical view of the call
stack over time, testers can see the
results of tracing the application in
Figure 2. Notice that there are several
calls to add_song(), some of which
take a long time and others that take
virtually none. Zooming in on the
worst case reveals that the longest call
to add_song() takes roughly 33,000
cycles, compared to the average dura-
tion of 82 cycles. Trace analysis tools
calculated this data to find each call to
add_song(), then displayed the results.

This application uses a doubling
array to hold its songs, so while on the
average it takes 82 cycles, occasion-
ally the extended time needed to add
a song to the array leads to the delays
reported by the application’s initial
customers. While this problem cer-
tainly could have been found with tra-
ditional tools, the trace tools make it
easy to track and find once the data
has been captured and analyzed.

In addition, tools like the Path-
Analyzer help testers track, identify,
and fix performance problems where
one example of a function takes a long
time. Once they identify the problem,
testers can modify their data structure
relatively easily to prevent any single
insertion from taking significantly
longer than the others, which is the
case with a doubling array.

HARDWARE TRACE
These powerful tools use the infor-

mation that hardware trace ports pro-
vide. Several microprocessors provide
such a port, which is generally a dedi-
cated debug channel that includes
information about each instruction the
processor executes and, sometimes,
even the data that the software run-
ning on the processor reads and writes.

Most hardware trace ports output
information about the instructions
they execute. Referred to as instruc-
tion trace, this process enables recon-
struction of the flow of instructions

the processor executes. In addition,
some hardware trace ports output
information about the data the
processor reads and writes. This
process, called data trace, traces the
flow of data through the system.

To collect trace data, devices called
trace probes gather data from a micro-
processor’s trace port and upload it to
a host PC that translates this informa-
tion into human-readable form. Once
it has processed the data, the system
feeds it into trace analysis tools that
testers use to leverage the trace data for
debugging and optimizing a system.

USING HARDWARE TRACE
Developers who want to use hard-

ware trace data on their next project
should choose a microprocessor that
has a hardware trace port. The most
widely available trace port, the ARM
ETM, can be found on a wide variety
of ARM microprocessors, including
ARM 7, 9, and 11 systems. The ARM
ETM provides full instruction and
data trace, which testers can use to
track down difficult bugs and perfor-
mance problems.

In addition to the ARM systems, sev-
eral other microprocessors provide
either instruction trace or instruction
and data trace functions, including the
IBM PowerPC 405 and 440, and the
PowerPC 55xx family of processors
from Freescale. If the system lacks a
hardware trace port, several options
can simulate it, including instruction-
set and system simulators and instru-
mentation solutions. Although none of

these systems offer all the benefits of a
nonintrusive hardware trace port, they
at least let testers take advantage of
trace analysis tools for several prob-
lems without having to migrate the sys-
tem to a trace-enabled microprocessor.

A s embedded devices become
increasingly complex, time and
quality pressures have become

one of the greatest challenges facing
device software organizations. Al-
though no solution will banish all of a
software engineer’s problems, hard-
ware trace offers a valuable tool that
can help solve many of them. Whether
the challenges consist of intermittent
bugs or serious performance problems,
hardware trace offers unique visibility
into the workings of software that lets
developers deliver better products in
less time and with less risk.

By applying hardware trace to their
projects, such as the MP3 player
examples presented above, software
engineers could find the challenge of
integrating unfamiliar components
into a complete device software solu-
tion a little less daunting. ■

Michael Lindahl is the engineering
manager for Green Hills Software’s
TimeMachine debugger. Contact him at
mlindahl@ghs.com.

Editor: Wayne Wolf, Dept. of Electrical
Engineering, Princeton University,
Princeton NJ; wolf@princeton.edu

Figure 2. Debugging intermittent system freezes. Several calls to add_song() show that the
worst-case add times take roughly 33,000 cycles, compared to the average duration of 82
cycles. Trace analysis tools processed this data to find each call to add_song(), which iso-
lated for debugging the small percentage of songs that took much longer to add.

Posted with permission from the IEEE Computer Society. Copyrighted © 2007
#1-20114442 Managed by Reprint Management Services, 717.399.1900. To request a quote online, visit www.reprintbuyer.com.

	Button4:

